Duomenų analizės ir archyvavimo centras (DAtA)
Prisijungti
Prisijungti
Atstatyti prisijungimo duomenis
  • Mokymai
    • Lektoriai
    • Buvę mokymai
  • Duomenų archyvas
    • LiDA Dataverse talpykla
    • Tarptautinė integracija
      • Europos Atvirojo mokslo debesis
        • Registracija
    • Nacionalinė integracija
    • Nuolatiniai identifikatoriai
  • Piliečių mokslo centras
  • Fr0gLab
  • Naujienos
    • Rekomendacijos
  • Apie
    • Kontaktai
    • Veiklos ataskaitos
  • EN
RDM
June 11th-13th 2019 training „Introduction to Social Network Analysis“

Description

Methodological training „Introduction to Social Network Analysis“

Level: Advanced

Training will be delivered by Monika Verbalytė (Freie Universität Berlin / Otto von Guericke University Magdeburg, Germany).

Relational sociology and social network analysis (SNA) offer a different perspective on the social world and immensely enrich our box of statistical tools. Its focus on connections rather than separate individuals or organizations, and ability to assess emerging structures from these connections rather than assume what macro-level conditions could impact on them provide better ways to capture social dynamics of human individual and collective behavior. With the rapid development of network science and increasing availability of data, we can formalize and explore many more networked phenomena: from interpersonal relations and group dynamics to political relations and media discourses. It could be applied in very different research areas: from psychology and sociology to policy analysis, international relations or communication studies.
This course is a short introduction to this fascinating world of networks. It will introduce participants to the network data, their properties, basic network vocabulary and relevant concepts, application area of the network analysis, software which helps to visualize and analyze network data, and some of the first analyses could be conducted on the network (both, defining positions of separate actor’s in the network as well as properties of the whole network).
At the end of the course, participants should be able to formulate a research question you could answer with the SNA, to assess what data is appropriate to answer this question, to present and describe your network, to choose suitable network measures and to conduct these analyses.

Methodological training will take place at KTU Faculty of Social Sciences, Humanities and Arts, A. Mickevičiaus str. 37, Survey Laboratory (room 210):
June 11 (Tuesday) 13:30 – 17:30
June 12 (Wednesday) 13:30 – 17:30
June 14 (Tuesday) 11:30 – 16:00

Agenda

Tuesday, 11 June 2019
Day 1: Starting with Network Data
13:15–13:30 Registration and Welcome Coffee
13:30–15:15 Slot 1: Collection and Preparation of Network Data
15:15–15:45 Coffee break
15:45–17:30 Slot 2: Network Visualization

Wednesday, 12 June 2019
Day 2: Understanding Network
13:30–15:15 Slot 1: Understanding Actors’ Positions in the Network
15:15–15:45 Coffee break
15:45–17:30 Slot 2: Understanding Structure of the Network

Thursday, 13 June 2019
Day 3: Testing Network Hypotheses
11:30–13:00 Slot 1: Correlations, Regressions and What More SNA has to offer
13:00–13:30 Coffee break
13:30–16:00 Meeting with research groups advances SNA users

Duration of training is 12 acad. hours. Training will be done in English.

Training is free for KTU SHMMF PhD students and staff. The fee for participants from other KTU faculties – 35 EUR; for other participants – 70 EUR. After completing the training, participants are issued a certificate.

Lektorius

Take a course to view this content

Susiję mokymai

Mokymai2
2025 m. balandžio 15 d. mokymai „MAXQDA dirbtinio intelekto asistento taikymas kokybinių duomenų analizėje“
Kokybinių duomenų analizė su MAXQDA
2025 m. balandžio 10, 14 d. Mokymai „Kokybinių duomenų analizė su MAXQDA: įvadinis lygmuo“
Mokymai1
2025 m. balandžio 8, 25 d. Mokymai „Socialinių tyrimų dizainai ir jų sudarymas“
October 1st – November 30th 2024 training „Ethical Hacking for Peace, Information Security, and Open Source Data Intelligence and Analysis (OSINT)“
Duomenų analizės ir archyvavimo centras (DAtA)
Socialinių, humanitarinių mokslų ir menų fakultetas, Kauno technologijos universitetas, A. Mickevičiaus g. 37-1100, LT-44244 Kaunas, el. p.: data@ktu.lt